Introduction

BMC (Background Models Challenge) provides videos for testing your background subtraction algorithm; two data-sets are proposed:
📁 Learning mode, with synthetic videos, here
📁 Evaluation mode, with complex synthetic and real videos, there

Disclaimer

When you use this material, please cite this paper:
📝 A. Vacavant, T. Chateau, A. Wilhelm, L. Lequievre: A benchmark dataset for outdoor foreground/background extraction. BMC/ACCV 2012.

You may also read and cite those articles:
📝 A. Sobral, A. Vacavant: A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. CVIU, 122:4–21, 2014.
📝 A. Vacavant, L. Tougne, T. Chateau, L. Robinault: Evaluation of background models with synthetic and real data. In Background Modeling and Foreground Detection for Video Surveillance, 2014.

Image

Learning videos

Those videos have been rendered by Sivic software, with complete ground truth, to test your algorithm and set the best parameters:
🎬 111 - 🎬 111_gt / 🎬 112 - 🎬 112_gt / 🎬 121 - 🎬 122_gt / 🎬 122 - 🎬 122_gt / 🎬 211 - 🎬 211_gt / 🎬 212 - 🎬 212_gt / 🎬 221 - 🎬 221_gt / 🎬 222 - 🎬 222_gt / 🎬 311 - 🎬 311_gt / 🎬 312 - 🎬 312_gt

A complete archive with all videos is available here:
🗃️ bmc_synth1.zip

Evaluation videos

More synthetic videos are provided here, with complete ground truth:
🎬321 - 🎬321_gt / 🎬 322 - 🎬 322_gt / 🎬 411 - 🎬 411_gt / 🎬 412 - 🎬 412_gt / 🎬 421 - 🎬 421_gt / 🎬 422 - 🎬 422_gt / 🎬 511 - 🎬 511_gt / 🎬 512 - 🎬 512_gt / 🎬 521 - 🎬 521_gt / 🎬 522 - 🎬 522_gt

You will also find real long videos in hard contexts, with partial annotations only (see img folder in archives):
🎬 001 - 🎬 002 - 🎬 003 - 🎬 004 - 🎬 005 - 🎬 006 - 🎬 007 - 🎬 008 - 🎬 009

Complete archives with all videos are available there:
🗃️ bmc_synth2.zip - 🗃️ bmc_real.zip

Image

Send a message

Contact

Thank you for visiting our website.
 

Email